成式AI大模型并未改变,人工智能在工业领域应用的范式
以ChatGPT、Llama等为代表的大模型技术拉开了迈向通用人工智能的序幕,人工智能成为全球经济增长的重要驱动力(2.720, -0.04, -1.45%),对各类产业的智能化带来全新的空间。根据普华永道的预测,到2030 年,人工智能可为全球经济贡献高达 15.7 万亿美元,超过中国和印度目前的产出总和。其中,6.6 万亿美元可能来自生产率的提高,9.1 万亿美元可能来自消费端的影响。对于制造业,人工智能一直是智能制造、工业4.0、工业互联网等领域的重要部分,在ChatGPT、Stable Diffusion等崛起前,质量检测、设备预测性维护等代表性的人工智能应用已经深度融入制造业,并且形成成熟的应用范式。
工业人工智能的应用范式已经成型 ,一是需要深度学习、强化学习等数据科学算法,计算机视觉、自然语言处理、语音识别等面向领域的算法,知识图谱、专家系统等知识工程,例如通过计算机视觉来构建产品外观检测的模型,基于强化学习进行排产规划模型的构建,借助知识图谱构建设备运维服务。二是需要通用支撑技术保障人工智能应用在制造业的部署和推理,例如边缘计算、高性能计算等技术保障现场的推理速度,时序数据库、大数据平台等保障数据的有效管理和接入。三是需要工业领域知识及经验实现人工智能应用与工业场景的适配,例如在模型训练的时候需要专家经验的介入实现调优和优化,在部分场景下需要机理模型和人工智能模型的结合才能发挥作用,在生产现场模型的部署和实施也需要和自动化的设备、工业软件等进行集成。
大模型的崛起并没有对人工智能在制造业的应用范式引起根本性的变革,但是在不同的环节增添了特定的需求,例如在算法层面,基于Transformer、U-Net 等架构的基础模型成为生成式人工智能进入制造领域的基础;在通用支撑技术领域,向量数据库、MaaS等也成为重要的数字基础设施;在工业知识及经验领域,不同以往对时间序列等结构化数据的需求,生成式AI对高质量文本、图片、文档等数据的要求不断提升。虽然大模型仍在原有的范式下进行应用,但是大模型技术会不断的拓展人工智能在工业领域应用的空间,根据埃森哲测算,Al可以在2035年将制造业的附加值提高近4万亿美元,根据Marketresearch预测,到 2032年,全球生成式人工智能制造市场规模将达到63.98亿美元。